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ABSTRACT .\

7

For T a maximal monotone operator on a Hilbert space H ;E:

and A a closed subspace of H, the "partial inverse" Ty of ig}
T with respect to A was introduced. T, is maximal monotone. g}:
The proximal point algorithm, as it applies to TA, was shown :to iéii
result in a simple procedure, the "method of partial inverses", for S&?
solving problems in which the object is to find x € A and y ¢ A ;f
such that y € T(x). This method was shown to specialize to give new EE.
algorithms for solving several optimization and equilibrium problems. EE:
An algorithm was described for finding a feasible point for a o
system of linear inequalities. If the solution set has nonempty é%i

B ot
7.0

My

interior, termination was shown to occur after a finite number of

>

B

iterations. The algorithm is a projection type method, similar to

.
by

N
S

the relaxation methods of Agmon, Motzkin, and Schoenberg. It differs

L

from previous methods in that it solves for a certain "dual"” solution

LAY

in addition to a primal solution. It is a special case of the —r
e

method of partial inverses. B
The feasible point algorithm was shown, for inconsistent &?
systems, to generate a sequence converging at a linear rate to the set ~—1
AN

of least square solutions. ﬁﬁﬁ
N

A primal-dual decomposition method was investigated to solve the N

separable convex programming problem., Convergence to a solution and

Lagrange multiplier vector from an arbitrary starting point was

demonstrated. T2 method was shown to be equivalent to the method of

- '. ‘ ...'...‘_'. ... . r
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partial inverses. In the nonseparable case, it was shown to specialize A

to a known method, the proximal method of multipliers. Conditions were

Yy ‘-;
provided which guarantee linear convergence of the algorithm. :ﬁ}
\': -y
For families of nonlinear programming problems, new conditions were jﬁi
'v.- )

established which guarantee uniqueness of the global optimizer to be .
a generic property. ?ﬂﬁ
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\ Many optimization problems are equivalent to a problem of finding

e

. a zero of a maximal monotone operator T on a Hilbert space H: {
-: i
. (1) to find x ¢ H such that 0 ¢ T(x).

: The known "proximal point algorithm” for solving (1) takes an

A arbitrary starting point X € H and a sequence (cn) of positive

A real numbers and determines a sequence (xn) by repeatedly applying

the pruximal mapping:

(2) x ,, = (I+¢ T

n+l (xn)'

'} . A vast array of problems can be regarded as special instances
' of (1). Examples are convex or linear programming, monotone
complementarity problems, network flow problems, variational

~ inequalities, and systems of linear equations or inequalities.

Nevertheless, the known uses of the proximal iteration are few. By far,

M

a’a"# 1

the most important application is found in the method of multipliers of

Hestenes and Powell. This algorithm for solving convex programming

D
».l

problems was known for some time before Rockafellar showed it to be a
special instance of the proximal point algorithm. Outside of

this, there are few serious uses. Although it is theoretically

P A XY NN

possible to execute, as a practical matter the iteration (2)

can be performed only in a few cases.

There are many problems which can be expressed in the form (1),

-‘..it.’.:-:tj-.-::t-‘.-::-::-::-:-Z-:-'-: L e e e A e T S e L i D e e el e
T I R O I Y N .
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are not easily solved by the proximal point algorithm, but have the

interesting property that T can be "decomposed” into simpler monotone
multifunctions that are easy to proximate. (To "proximate" means to
execute the rule (2), i.e., to evaluate the proximal mapping). Our
research in [1] has shown that new algorithms can be developed which
exploit such decomposition.

The principal new idea that enabled us to extend the
powers of the proximal point algorithm and derive such
decomposition methods is our notion of the "partial inverse”
of a monotone mapping. If A is a closed subspace of H
and B=A, then each x ¢ H can be written uniquely as
e B. If T |is

with x, ¢ A and x

X = Xptxg A B
a multifunction, the partial inverse of T with respect to A

is the multifunction T, ¢ H > H defined by v ¢ TA(u) iff there
exists x and y in H with y e T(x), u = x,+yy and
V = Xp+Y,. Ty is (maximal) monotone iff T is (maximal) monotone.

We showed that T could be used as a vehicle for introducing

A
introducing duality into and solving many problems. Often, a problem

can be expressed in the following form (for suitable choices of T

and A):
(3) to find x € A such that there exists y e A
with 0 ¢ TA(x+y),
where y 1is a "dual variable" and T is maximal monotone. If

z could be found such that 0 ¢ TA(z) then X=z, would solve

----------------------- LY} LI Trogte S ! “ e e e M
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(3). In [1] we introduced the idea of solving (3) by finding

such z via the proximal point algorithm. Theoretically, this
can definitely be done; the fact that it is also practical was
demonstrated in [1]. There it was shown that this leads to the
following iterative procedure, the "method of partial inverses" to

solve (3):

ALGORITHM 1 ("method of partial inverses” ([1]).

Init}alize: Choose arbitrary x, € A ‘and Y, € B.
Iteration k (k=0,1,...):
Proximal step: Find xk, y* € H such that
X, *¥, =X, *y,  and ék(y,;)Aar(y,;)B e T((x)) ék(x;ga).
Projection step: Let Xpel = (xl'()A and y,,, = (Y&)B'

In [2], we applied the partial inverse approach to the problem of

solving a system of linear inequalities:

(4) to find «x ¢ Rd such that <x,u;> < bi' i=l,...,Nn

d

(where 0 # u; € R and b, e R). Let C. = {x : <x,u;> < bi} and

i
C = le\...IICn. It is a straightforward matter to apply Algorithm 1
to solve (4). Our principal accomplishment in [2] was to establish
that that algorithm actually terminates after a finite number of

iterations, provided the solution set has nonempty interior.

The algorithm so obtained is a new addition to the family of known
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"projection® methods. These solve (4) by computing a sequence

of projections onto the halfspaces C, := { x s <x,u;> < b, }.
The best known of these are the "relaxation" methods of Agmon
and Motzkin and Schoenberg. According to the simplest of these, a

sequence (xk) is generated by taking to be the

Xk+1
projection of X, onto the furthest halfspace Ci' Another
possibility is to project in turn in some fixed cyclical order
onto the sets Ci‘ In another variation studied by Motzkin and

Schoenberg, one takes to be the reflection of «x

Xr+l k

across the furthest hyperplane. This last method has the surprising
property that a solution is always found in a finite number of steps
if the solution set has nonempty interior. In a more recent study by
Goffin, classes of problems (4) were identified for which finite
termination in the relaxation method occurs without reflection.
However, the reflection method is the only one of these known methods
for which finite termination always occurs under the sole assumption
that the feasible set has nonempty‘interiOt, so our result proving

finite convergence of the algorithm is quite surprising.

The algorithm we have proposed to solve (4) is:

.................




ALGORITHM 2.
Start : Choose arbitrary Xgr Ygpr +++v Yo € R
with Y01+"'+Y0n = 0.
Step k (k=0,1,...): Compute

Xpi pro;ci(xk+yki), i=l,...,n
Yei = X*Yxi~*ki o i=lee..on

and update

_1y¢n .
Xeel = = Li=1 Xei

- * - 1 n . .
Yk+l,i - yki = Zj=1 Yka i=1l,...,n

From results we proved in [1] it follows that regardless of the choice

of starting values Xgr Ygpree+r¥opr

either x, - x and y,, - Y; with x € C,
Y; normal to Ci at x, and Y1 *eeet ¥, = 0,

or [(xk+ykl,...,xk+ykn)| + o and (4) is inconsistent.

Our main result from [2] regarding Algorithm 2 states that
termination occurs after a finite number of iterations if the
interior of C is nonempty. More precisely, int(C) # g implies

for some k that

o
e o
~
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*
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with x, € C.

k
In [3], we investigated the behavior of Algorithm 2 in

the cases where 1int(C) = @ or where C = @. If int(C) = @ but

C # @, we showed that the sequence (xk) converges to a solution and

that the distance to the solution set approaches zero at a linear rate.

Even in the case where C = @, we got convergence at a linear rate to

the set of least-square solutions of (4), and (x,) converges to one
particular least-square solution. More precisely, we hav- »roven in (3]

the following (x denotes the set of least square soluti: )

THEOREM. Let sequences (x,), (viei)r (xps)s (ypy) - produced

by the Algorithm 2. The sequences (xk) and (x&i) (i=1,...,n)

converge to limits

[ -]
iio xl'(i hd x;i, i=1'ooo'n,
where
i x = 1 Yix!. and x'. € C.
* -3 — 1 ™1 ®] 1
.. — .
ii. x5 = prOJCi(xw)

X, € X and the vector (x;l-xo,...,x;n—xw) equals the vector of

smallest norm in the set

i fw.) t wye Cp,...,w e C b

1
{(wy- - ZWi,...,wn-

I{. AT LY ] -.< AT TV o, ‘- t‘. -\-\- WESK SRR \‘.‘-
n\!"\¢ \ * U\ '\- " p-;\{ - '.: h- '-"f -~ "~..\’.. '
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?2 This vector also equals the element v of smallest norm in range(T,).

S For the sequences (Yki)' (Yki)' one has
Wt
ij i1m (ykl,...,ykn)/k = lim (Yﬁl""'ykn)/k = -v,

-‘_. >x k.’m

" In (4], we applied the partial inverse approach to obtain a

-+ new decomposition algorithm for the solution of separable convex
:if programming problems.

- The convex programming problem is
A

EZ (5) to minimize fo(x) subject to x € C and

N f.(x) <0, i=1,...,m,

- We assume the functions fi (i=0,...,m) to be finite-valued

convex: Rd + R, and C C:Rd to be closed convex. In the separable
case of (5),

N

"

N

- d.

2 (6) there are functions fij : RJ +R (0<i<m, 1l<j<n)

:} (d = dy+...+d ) such that for each i,

‘EZ n dj

ﬁ: fi(x) = zj=1 fij(xj) (x = (xl,...,xn), xj e R7)

e d.

[ and there are closed convex sets Cj<: R J

<N l
- such that C = clx...xcncz Rd. |
o |
}; Our method is closely related to a family of "dual" methods for

e the solution of (5). The prototype for such methods, the classical !
-\. !
- 1
f; dual approach, involves the Lagrangian function g
-

N G T S T I B O T T P O T A P A I S
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L(x,y) = f5(x) + ZT=1 y;f;(x) (xeC, y>0)

and the concave dual objective function

g(y) = inf L(x,y) (y>0).
xeC

The dual problem to (5) is

(7) to maximize g(y) subject to y>0.

Under mild assumptions, the infimum in (5) equals the supremum in
(7) and a solution y > 0 to (7) exists. Assuming the existence of
such y, it is known that x solves (5) if, and only if, (x,y)
is a saddle-point for L.

In a typical dual approach, one minimizes L(-,yk) over C for
a sequence of values Yy 2 0, obtaining a sequence X} which
hopefully converges to an optimum while Y, converges to a dual
optimum. Several versions of this strategy have been suggested in
the literature.

One very valuable characteristic of the classical approach is that

it leads to decomposition algorithms. For the separable problem (6),

Lix,y) = fo(x) + [, y;f(x)

zj (£q4(x5) + s yifi (x50,

Thus the minimization in x of L(x,y) over C decomposes into the n

separate minimizations of Lj(xj,y) = foj(xj) + zi Yifij(xj) over Cj’

-------------------- .-aw . m -
T N T e LR _n_ - ._~ et .-.‘..“_-.:‘.\‘.‘ ".‘-.. _q“._.‘\~g Y
................... q. LI T T ) ~h . -‘. -. e



7.1
4

'y

T ety
X

[/

2

£ ok
@

Dy G G N o T e N N A S LA D

This "Lagrangian decomposition" has been exploited by numerous

authors. By replacing a d-dimensional constrained problem with a
sequence of less constrained : ~oblems of lower dimensions dl""'dn’
it offers a great advantage. Some authors have investigated ways of
applying this technique in situations where separability is absent,
manufacturing separability by the device of replacing functions

with their linear approximations (linear functions are always
separable).

However, the classical approach has several potential drawbacks.
First, for some y > 0, L(x,y) may fail to achieve its minimum on C.
Worse, g(y) may have the value -». Such values of y must be ruled
out, so the dual problem, in addition to the nice constraint y > 0, has
the possibly nasty constraint g(y) > -». It is possible to generate a
sequence x, failing to be a minimizing sequence for (5) even with Yy
being a maximizing sequence for the dual. All of these inconveniences
can be ruled out by imposing appropriate assumptions. The most
serious problem is that one is severely restricted in the choice
of a method to maximize gq. Each-evaluation of the function g(y)
requires that the function L(x,y) be minimized in x over C. Thus
any method requiring many evaluations of the function g is
impractical. Fortunately, the minimization in x of L(:,y) yields, at
no extra cost, a subgradient for g at vy, a fact which motivates
Uzawa's method, a steepest ascent approach to the maximization of
g. The Dantzig-Wolfe algorithm can be viewed as the approach
whereby g 1is maximized via a cutting plane method.

One attractive strategy for avoiding some of the pitfalls

z.pn\.r e EAI AT I EA AR K
A % N B e e e e S TP T Y e ete" -ttt
m..“;.‘.’kﬁ.ﬁ.i(kL'.J.':A.':Lﬁ{:{‘.{\':\'. \':‘.{\{\':\.;\-.'{"zkzi'zl n_..'p,A\:
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of the classical dual approach is offered by Rockafellar's proximal
method of multipliers, a modification of the multiplier method of
Hestenes and Powell. At each step, one has x and y at hand

and minimizes the "augmented Lagrangian”

(8) p(x) = folx) + ; |x-x|2 + [;max®{0, f£,(x)+y;}

over the set C to obtain the next x. The strong convexity of p(x)
guarantees the existence of a unique minimum and the next multiplier
y is chosen according to a simple update rule. Global convergence is
guaranteed under remarkably weak assumptions: fi finite convex,
C closed convex, and existence of a solution-multiplier pair.
Unfortunatley, the penalty function (8) cannot be written as
a sum of n functions pj(xj), so the augmented Lagrangian approach
does not directly yield a decomposition algorithm. This is the
principal disadvantage of the augmented Lagrangian approach used for
decomposition purposes. Several strategies for dealing with this problem
have been discussed in the literature. One way around this difficulty
is to either replace p(x) by a linear approximation or rely on a
method that minimizes p(x) that uses linear approximations, such as
Frank-Wolfe.
In the nonseparable case (n=1), our method specializes to the
proximal method of multipliers. In the separable case, (8) is

replaced by a function of the form ij, where each °j is a function

only of X and looking very much like (8). The user is free




13

to minimize the strongly convex function ¥ over the set Cj (this
is the only constraint in the subproblem minimization) by any method
desired. The advantages of the proximal method of multipliers are
retained. One still has existence and uniqueness of a minimum in
each subproblem minimization, and global convergence to a solution
and multiplier under the same minimal assumptions, even when the
minimization is performed only approximately according to the
stopping criterion we provide. The update rule for the multipliers
is just as simple as in the proximal multiplier method.

There are two basic approaches to the solution of the separable
problem in a hierarchical or multi-level fashion. These are
resource-directive and price-directive methods. In the resource
directive approach, oné iteratively determines values uij such

that the solutions of the problems

(9) min fj(xj) subject to X5 € Cj and fij(xj) < Uy

(j=1,...,n) solve (5). In the price-directive approach, one
iteratively determines "prices” Yyreeor¥py such that the optimal

solutions of the problems

(10) min foj(xj) + zyifij(xj) subject to x5€C;

(j=1,...,n), also solves (5).
Our method differs from existing methods in that it iteratively
minimizes a function depending both on prices Yyreeor¥y and

resources uij' The prices converge to values such that the

solutions to (9) are solutions to (5) and the allocations
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converge to values such that the solutions to (10) solve (5). The

method is in this sense both price-~ and resource-directive.

d.
Let n > 0 be an arbitrary constant. If we define pj: RJ +R by

~

fOJ(qJ |qJ-x | + Z max2{0, £, (qJ)—u.

1j+nyi} (if qi € C.)

ij ]

oj(Q3)= ﬁ

+o (otherwise)

C

the decomposition algorithm we have introduced is

ALGORITHM 3.

Initialize: Start with arbitrary x=(x1,...,xn) € Rd, y ¢ R®,
and u ¢ R™ such that juij =0, 1i=1,...,m.

Iteration k (k=0,1,...):

Minimization step: For j=1,...,n, find the unique q! to

]
minimize pj(qé) (subject to the implicit constraint q3 € Cj)’
Update: Let uij = max{uij—nyi,fij(qj)} and then
1
+=' +=l__2 u' +._. +_Z u!
X5 % 95 i % Yi5 T n ik Yik Yi =¥ * 7n tk Yike

Our principal result regarding convergence of this algorithm is:
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(Qp) to minimize fo(x,p) subject to x € C and
" fi(x'p) <0 for ieI = {1,...,s}
g‘d =0 for iedJ = {s+l m}
. P I .

o
h .
N By a "generic" property of the family (Qp) is meant a property

L
P
;gh which holds for all problems (Qp) except possibly for values of p

‘a, in a subset of Lebesgue measure zero.

Ly
A

’, ) ' . .
'43 Rockafellar and Fujiwara have (independently) given examples of
b
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~
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THEOREM, Let Algorithm 3 be applied to the convex programming
problem (5). The algorithm is equivalent to the proximal point
algorithm in the sense that (x%,u*+y") = (I+(n3F)A)-l(x,u+y), and
P 1is a certain lower semicontinuous convex function. Suppose the
minimization step is performed accurately enough so that

“k

in step k: for each j, dist(O,apj(qg)) <= (Te, < =)

holds. If the generated sequence of iterates (x,u+y) is

unbounded, there exists no solution-multiplier pair. If the sequence
is unbounded and the Slater condition is satisfied, then the

convex programming problem (5) has no solution. If the sequence

is bounded, then x, y, and u converge, respectively, to a
solution, Lagrange multiplier, and optimal allocation for the convex
programming problem. Convergence occurs at a linear rate provided
the strong second-order optimality conditions are satisfied for the
problem (5).

In [5], we discussed the parameterized family

ARSI AEACHEAT AR A OO A /SO NGRSO R A SO AT S |




constrained families (Qp) having the property that for almost all

P, (Qp) either has a unique global minimum, or no global minimum
at all. Using the transversality theorem, we showed that their
results can be extended to more general classes of parameterizations.

Fujiwara considered the family

Q. .) to minimize f(x)-x:u subject to g(x)=b+v

(f : R"+ R, g: R+ RM

and showed, assuming sufficient
differentiability of the functions f and g, that for all v,
u,v) has at most one global solution for almost all u. This
implies, by Fubini's theorem, that for almost all (u,v), (Qu,v) has
at most one globally optimal solution. He proved a‘similar result
for problems where the equality constraint is replaced with an
inequality. Fujiwara obtained his result by applying a theorem of
Araujo and Mas-Colell.

Rockafellar obtained a similar result for the more general family

(Qw,u,v) to minimize fo(v,x)+w-x over all x satisfying
fi(v,x)+ui <0 for 1i=1,...,s
=0 for i=s+l,...,m.

Only the linear perturbation w of the objective function has a

real role in his proof of global uniqueness; like Fujiwara, he holds
the other parameters fixed, shows the result to hold for almost

all w and then invokes Fubini's Theorem to show that the result
holds for almost all values of the parameters combined. The

principal tool he uses to obtain almost sure uniqueness is the

------------
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o
;j fact that a convex function is differentiable except on possibly
:f a set of measure zero (although convexity of the functions £, is
éﬁ. not assumed). The Mas-Colell theorem employed by Fujiwara is proved
~§? by quite direct and elementary means. In a more recent paper,
-Ej Fujiwara has established a generic global uniqueness property for
o constrained problems under a compactness assumption on the constraint
ig set. This result, however, deals with "generic" properties which hold
. for all functions fi in an open dense set with respect to the strong
‘:i Whitney C2-topology.
i; Our result on the generic global uniqueness property can be
o regarded as a generalization of the Mas-Colell theorem to
Sﬁ constrained problems. Our use of the transversality theorem
:i simplifies the proof considerably, though at the expense of
o slightly stronger differentiability assumptions. We considered
‘ij families of the form
fk (Qp’q) to minimize fo(x,p,q) subject to
~{_ £,(x,q) <0, i=1,...,s,
‘EE = 0, i=s+l,...,m,
‘.1 where the assumptions on fi are as before and the parameters vary
EE over some open set in Euclidean space. The criterion we used
Eﬁ to establish generic global uniqueness was:
.
.é; (11) for all xl# Koo and all q, the function
;3 p ~+ fo(xl,p,q) - fo(xz,p,q) is of rank one at all p
3
.
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The Rockafellar and Fujiwara families considered above are easily

seen to satisfy criterion (11).

THEOREM. Let the family (Qp,q) satisfy the criteria (11) and

the function q =+ (fl(x,q),...,fm(x,q)) is

of full rank m for all x at every (.
Then for almost all (p,q), (Qp,q) has at most one global optimizer.
In fact, for almost all (p,q), f,( ,p,q) cannot achieve the same

value at any two distinct critical points (points satisfying the

first-order optimality conditions along with some y).
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